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ABS TRAC T

This work does an investigation of large data collection

systems and in particular the processes which result in lost infor-

mation. A comparison is made of the sensitivity of different system

configurations to information loss by overloading the receiving or

serving mechanisms with random signal arrivals, and errors of symbol

interpretation due to propagation through a noisy and fading channel.

The channel is assumed to have additive, white Gaussian noise and a

Rician fading structure.

The types of systems operation examined include sequential in-

terrogation of the data sources, and random arrivals with or without

signal separation capabilities. The servicing mechanism is examined

for information lost considering such factors as arrival rate, number

of receivers, independent or dependent operation, and the number of

redundant data periods per transmission for each source.

-i-



I. INTRODUCTION

With the significant increase in modern computational facilities,

data collection systems on a very large scale are becoming increasingly

common. Large computational, storage, compilation, retrieval, and

analysis capabilities permits the handling of data from collection

systems having a large number of sources. The mobility of a satellite

allows a collection device which can cover large geographical areas.

These systems can be used to provide a quick reaction response to

oceanographic, seismic, or atmospheric disturbances, or they may be

used for gathering background data from which models of physical

phenomena can be made and analyzed for long term prediction and under-

standing.

There appears to be a need for work relating the various relevant

factors affecting the system performance of large scale information

collection systems. Several such systems are in the planning stage and

it is possible that expansion of existing systems might be considered

in other cases.

A great deal of the work presently being done is related to power

consumption, spectrum usage, receiver sensitivity, and other practical

considerations. These, of course, are most important because the

feasibility of the system must precede evaluation of system performance.

However, granted feasibility, attention then turns to optimization

considerations of systems design or systems philosophy. Many questions

arise concerning the optimum number of sources or receivers, the
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maximum allowable bandwidth and readout time, and the minimum accepta-

ble rate of information loss. These are the types of problems to which

this study has been directed.

While these collection systems may differ in nature, there are

several similar problems and characteristics. Some environmental

parameters are monitored by a group of sensors and the state of the

environment in that localit_ upon conversion to a recognizable language,

becomes the raw data of the collection system. The data are then con-

verted to a form suitable for transfer through a communication channel.

Arrival of the data from each of the sources at the processing or re-

ception mechanism completes the transfer phase of tlle data, and

initiates the processing oF servicing phase o£ the collection system.

The servicing function can be accomplished in several ways de-

pending upon the nature of the individual arrivals. First, the

arrivals could be time separable by having the sources respond se-

quentially to an interrogation signal. Secondly, the number of

arrivals in an interval could be subject to a random distribution with

or without the additional capability of signal separation by frequency,

location, or signal orthogonality. In the first, information is not

lost by the servicing operation. However, in the second, because of

the random nature of the arrivals, overloading within a particular

interval can occur and this can directly cause an arrival to be lost

or incompletely processed, and hence, information is lost.

It is, then, the intention of this study to examine the two

stochastic processes that are associated with lost information. The

one relating to reception system overloading and the other to symbol

errors due to data transfer in a noisy, fading communication channel.

J
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II. HISTORICAL BACKGROUND

The problem studied was suggested to the author by Dr. John S.

Nisbet of The Pennsylvania State University. It arises from oceano-

graphic and meteorological reporting systems presently under consider-

ation such as those described by O'Rourke (1965) and The National

Academy of Sciences (1966). Most of the previous work relates to

system feasibility. Once feasibility has been demonstrated, the next

logical step is to consider system design criteria and performance

optimization. This study anticipates the need for research in that

direction.

The research reported here does not use methods that can be

easily classified under one descriptive branch of electrical engineer-

ing. However, the approach and goals may be associated with what has

been generally understood by the terms systems analysis or systems

engineering. Included in this treatment are elements of statistical

communications theory, stochastic processes, and queueing theory.

Considerable attention has been given to optimal design of

communications systems and systems concepts since World War II, for

example, see Kalaba and Juncosa (1956) and University of Chicago (1957).

By 1945, it was generally accepted that studies of communications

systems could no longer ignore noise effects, and most studies since

then have treated both the pure signal and the effects of the noise. A

paper by S. O. Rice appeared in 1945 and then became a foundation and

stimulus for later investigations. This paper mathematically treated

the effects of noise in physical systems.
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For telemetry systems using pulsed signals, Van Vleck and

Middleton (1946) have discussed reception with only a limited knowledge

of the received signal characteristics. The decisions madeby the re-

ceiver system logic were accomplished by statistical inference.

Other investigators have madefundamental contributions to the

general theory, including stochastic processes, Weiner (1949), optimum

filters, Zadeh and Ragazzini (1952), and matched filters (filters whose

frequency response matches the frequency spectrum of the signal), Van

Vleck and Middleton (1946), and Turin (1960). Several comprehensive

textbooks have appeared on the subject of statistical problems of

communication. Perhaps amongthe most notable of these are Middleton

(1960), Lee (1960), Davenport and Root (1958), and Wainstein and

Zubakov (1962).

In 1955, Helstrom (1955) considered the resolution of two signals

in white Gaussian noise, and later Turin (1956) used these results to

find the binary error probability of noisy multiple channels with

Rician fading. Lindsay (1964) considered multiple channel fading

problems with an N-ary communications code.

The purpose of that part of the study related to systems error

probability is to examine the system performance under the effects of

signal to noise ratio, error probability, the symbol interval, and the

parameters of fading. In this stud_ the system symbol recognition

error as a function of signal to noise ratio, symbol time, and other

factors, is assumedindependent of the over-all criteria and is utilized

separately.
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The first theoretical research into the properties of queues be-

gan with problems of telephone operation, and the most notable of these

is the work of Erlang (1918). A queue is defined as a waiting line

similar to the line formed by patrons at a ticket counter. Erlang's

work stimulated other investigators such as Fry (1928), whose book

deals with a wider class of queueing problems. Other pioneering works

in the theory of queues are those of Pollaczek (1930) and Khintchine

(1932). More recentl_ research by Kendall (1954) formed the basis for

most analysis techniques which utilize the inherent Markov properties

found in these processes. This is known as the imbedded Markov chain.

Lindley (1952) provided an integral equation approach to queues with

only a single server. Notable books treating the general theory of

queues have been appearing regularly. Some of these are Morse (1958),

Saaty (1961), and Takacs (1962).

In 1932, Crommelin (1932) derived waiting time equations for a

queue with fixed service times if there was no limit to how long a call

could wait in line. Then Everett (1953) found the probabilities of

being in each state for waiting lines with a fixed service time. More

recently, Burnett, Bogar, and Konhauser (1959) considered both multi-

ple and single server queueing problems for various service times.

They found expressions for the waiting time and mean waiting time.

Later Daley (1964) obtained a general solution to the single server

queue with a fixed time allowed for waiting.

In the study reported in this thesis, we will be concerned with a

finite waiting limit and a constant service time, or with no waiting

and multiple servers.
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Much of the work done previously assumes that the service times

follow a negative exponential probability distribution. While this is

useful in telephone applications, we are concerned here with telemetry

type arrivals or calls where the service interval is normally a con-

trolled fixed length. Also a large measure of previous work is con-

cerned with expected waiting times. We are interested in the proba-

bility of either no service or an incomplete servicing, both implying

lost information.

The information lost by the servicing of arrivals, in conjunction

with the lost information from misinterpreting the received symbol,

forms a part of the operational characteristics to which system optimi-

zation techniques can be applied.
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III. STATEMENT OF THE PROBLEM

3.1. General Statement

The basic problem area studied is related to the optimal design

of information collection systems where there are a large number of

data sources. The study attempts to develop the necessary relation-

ships required for making systems design and philosophy decisions. The

systems considered will generally have noise and fading problems and

separation of the sources by time, frequency, space, or other means may

not always be possible.

3.2. Specific Statement

This study is confined to the context of a large scale collection

system without being specifically bound to a particular model or appli-

cation. The two stochastic processes which will affect the rate of

information loss of the system will be examined. The two loss processes

are the information loss resulting from misinterpreting the transmitted

symbol and the loss resulting from overloading the servicing mechanism.

The study attempts to examine the system performance associated

with each of the following considerations_

i) the symbol interpretation error associated with

transmission in a noisy, fading channel;

2) the probability of information being lost or

incompletely processed due to overloading the

receiving system;
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2a) the effect of data redundancy on information

loss;

2b) the effect of additional independent receivers

on the information loss;

2c) the effect of additional dependent receivers

on the information loss;

3) the total information loss from both symbol errors and

servicing;

4) the time-bandwidth problem associated with different

types of system operation;

4a) the sources are sequentially interrogated

without time coincidence;

4b) randomoperation of the sources with no

separability capability;

4c) randomoperation of the sources with separa-

bility possible.

The intention of this study was not to becomeinvolved with a

specific design of all or any part of the collection system, but to

assumegeneral feasibility and then provide the data for making de-

cisions pertaining to systems philosophy. Nor was it the intent of

this study to be confined to any particular model or application.
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IV. TYPES OF SYSTEMS AND SYSTEMS OPERATIONS CONSIDERED

In trying to obtain a satisfactory systems concept for a large

scale data collection system, one of the first problems encountered is

the problem of how to handle the large flow of data from the sources to

the servicing mechanism.

4.1. Sequential Interrogation

One of the first methods that is usually considered is to se-

quentially interrogate each source. The interrogation device operates

in conjunction with the processing device so that unique identification

is obtained. The interrogation signal must carry a coded signal

uniquely recognizable by only one data source. After recognizing the

code, the source then transmits its data relating to the present or

past stored state of the sampled environment. The receiver, upon re-

ceiving the transmission without interference from other sources, can

identify the source uniquely because of the coded interrogation. This

type of operation has one great advantage. There is no interference

from other sources during the transmission, an_ henc% there is no lost

information from overloading the server. There are three disad-

vantages of such an operation. First, each source must have a capa-

bility to receive, decode, and identify a signal sent by the interro-

gator. Such a capability may prove too costly if the number of sources

is large. Secondly, since the readout of each source is time se-

quential, the total time to read out the whole system may be excessive

and could exceed the limits for a quick reaction capability. The last
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disadvantage is the necessity for providing the interrogation capa-

bility and a communication link with the servicing receivers for

identification purposes. If the interrogation device is a satellite,

the additional requirements of antennas, transmitter, directional

stability, and power requirements might be undesirable.

4.2. Random Arrivals without Separability

Another type of operation that has some utility is to cause the

sources to transmit randomly in time for a complete data interval

duration corresponding to a time multiplex transmission for every

environmental parameter monitored. The data interval is thus fixed for

all sources. Since there is no separability of signals, a unique

identification code for each source must also be transmitted along with

the data. The sources might start transmission randomly corresponding

to a mutual probability distribution, or they might be associated with a

fixed incremental change of each or some specific environmental

parameter monitored. This type of operation has the advantage of re-

quiring no interrogator and no communication link between servicing

and interrogation, and the individual data sources do not require a re-

ception capability. The disadvantage of such a system is that without

the separability capability of the signal, the arrival rate of the

signals at the processing receiver must be sufficiently low to prevent

time overlapping of data signals from different sources. Since this

cannot be assured with certainty, it must be accomplished only for an

acceptable rate. This means, that by reducing the signal arrival rate

sufficiently, time overlapping which causes lost information can be re-

duced to a satisfactory level. Unfortunately, the reduction in arrival
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rate usually leads to an excessive readout time for the whole system.

The problem then reduces to a balancing of arrival rate, probability

of lost information, and readout time. If upper limits are placed on

two of these, it may not be possible to adjust the third to satisfy the

restrictions.

4.3. Random Arrivals with Separability

This type of operation differs from the former in that we assume

that separation of the signals can be accomplished by other means than

transmission time such as by the use of frequency, space, orthogonal

signals, etc. Therefore, information is not necessarily lost if time

overlapping occurs as in previous operations.

i. Multiple server operation

This type of operation allows the potential utilization of

additional servicing receivers by the use of a scanning master receiver

and slave receivers capable of being assigned to service a specific

signal. Naturall_ since time overlapping is possible, the probability

of lost information due to an arrival encountering an already busy

server can be reduced by increasing the number of servicing receivers.

2. Redundant data signals

An alternate type of operation that is quite interesting is the

use of data signal redundancy by causing the complete data interval to

be repeated several times in one transmission. This, in effec_ forms

a uniformly finite duration queue with reneging (leaving a queue be-

fore service is completed). If the signal has not started service be-

fore the last repeated data interval, the signal is lost or
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incompletely processed. The use of repeated data intervals, however,

allows the signal to "wait" for a server to becomefree, and the signal

can be processed on a subsequent data interval instead of being lost

immediately if the server is occupied upon arrival.

The advantage of multiple receiver or data redundancy operation

is, of course, that the arrival rate can be made larger by the addition

of receivers or data intervals. This implies that the readout time and

lost information rate can be reduced correspondingly. The disadvantage

of such operation is the cost of additional receivers or data intervals

and the cost of the separability capability. If frequency separa-

bility is used,the system bandwidth may be excessive. If space

separability is used, the associated system problems which result from

the need for high resolution antennas may prove to be insurmountable

or cost too much to achieve. Signal orthogonality would require more

sophisticated correlation reception.

Of course more sophisticated operations and combinations of the

different techniques mentioned are possible. Those considered form a

basis for a study relating to first principles of operation and

further examples can be treated by techniques similar to those de-

veloped in this study.
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V. APPLICATIONS

Several examples of practical applications consistent with this

study are the following:

I. A traffic density and classification monitoring system for a

large city freeway, bypass, or turnpike system. A large number of

traffic classification and density monitors could be located at

strategic points. The information as to vehicular type, rates, and

volume could be transmitted to the collection device by telephone wires

or by radio signals. The data could be analyzed to control or synchro-

nize traffic signals or to specify alternate routings for cars, trucks,

buses, emergencyvehicles, etc.

2. A weather reporting system capable of making measurementsof

temperature, pressure, wind velocity and direction, humidity, etc. The

sensor-transmitter stations might be small unattended units scattered

over uninhabited regions of the earth, fixed or floating at sea, or

attached to tethered or free floating balloons. The data could be

gathered by a central processing center such as a satellite or ground

station. The data could be analyzed for quick reaction warning of

potentially dangerous weather situations or it could be used in making

meteorological models for understanding and study and long term pre-

diction.

3. A reconnaissance system whose purpose it is to monitor radar,

radio, or telemetry signals associated with scientific, economic,
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political, or military activities of someotherwise inaccessible

targets. In such an application, control of the sources by the col-

lection device is generally not possible.
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VI. PROBABILITYOFLOSTINFORMATION,I

Overloadin$ the Collection System

The first problem we shall treat will be the probability of in o

formation loss due to receiver overloading. In the case of sequential

interrogatio_ there is no receiver overloading an_ henc% no loss of

information by this mechanism.

6.1. Random Arrivals without Separability

In the case of random arrivals without separability, loss can

occur when two or more sources are transmitting simultaneously.

First, we shall make the assumption that the number of arrivals in

any time interval is independent of any other non-overlapping time

interval and depends only on the length of the interval. Let k be the

mean number of arrivals per unit time which is assumed to remain

constant. This leads to the Poisson Distribution and following Saaty

(1959) the probability of exactly n arrivals during x time units is

(Xx) n e-xx

Pn (x) = n_ ' (6.1.1)

The probability density • (x) for exactly n arrivals in exactly
n

x time units is

T (x) :
n

(probability of n - I arrivals in x)(probability of one

lim arrival in Ax) ,

_X_O _X

II!
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or

-kx -kAx
(kx)n-l- e kAx e

n-I! I'. (6.1.2)(x) = lim
n Ax

Ax_o

This reduces to

T (x) = k(kx)n-I -kx
n n-12 e (6.1.3)

In the non-separable random arrival situation, information can

be lost if upon the arrival of each signal another signal is being

serviced, or if during service another arrival occurs. The probability

of information loss for this case is PI and may be described by,

P1 = the joint probability of an idle server upon

arrival and at least one other arrival occurs

before service is completed plus the proba-

bility of a busy server upon arrival of the

signal.

This becomes

PI =

OO T

[i- Po(Ts)] f _l(X)dx +/s Tl(X)dx
T
s o

(6.1.4)
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o_ T

PI = e ke-kXdx + ke-kXdx"
T
s o

(6.1.5)

After integration PI becomes

-2XT
s

PI = I - e (6.1.6)

From equation 6.1.6 it is apparent that P1 is just the probability that

there is at least one arrival either within the interval T before or
s

within the interval T after the arrival considered, since
s

-2k Ts . .
Po(2Ts) = e and 1 - Po(2Ts) = PI Equation 6 1.3 is shown

graphically in Figure i. It can be seen in Figure 1 that a low proba-

bility of loss (below .I) may be obtained only for a low value of

kTs (.05 or less). In this region, P1 may be approximated by

PI _ 2kT for kT _ .05. (6.1.7)
s s

Figure 1 indicates that this method of service will not be very useful

if the readout time, which depends on k, and the probability of loss

are desired to be as small as possible. If one is restricted to a

specific value, it is possible that the other can not be adjusted to

obtain satisfactory results. It should be noted that this type of

servicing results in lost information from both the signal being
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serviced and the signal which arrives during that service. In later

servicing models, only the signal which arrives during the service

period will contribute to the total loss.

6.2. Random Arrivals with Separability

Consider two methods of decreasing the probability of info_

marion loss. In the first, the servicing function is performed by

multiple receivers operating in such a way that each receiver may

service a different arrival. In the second, data redundancy is ob-

tained by repeating the data several times during each transmission

period. Once the data has been serviced, the receiver is free to be

reassigned. The second method is discussed later.

i. Multiple receivers

Three cases of multiple receiver operation will be considered in

order of increasing complexity. In the first, signals are assigned

successively to receivers as they become free. In this case, every

arrival will start service sometime within its duration. However,

that service may be incomplete if the service did not start immediately

upon the arrival of the signal. This type of servicing permits a

signal to be incompletely processed, but does not effect the signal

being serviced if another arrival occurs before that service is ended,

either by completion of service or by termination of the signal.

In the second system, the signals are assigned with respect to

the order of arrival in rotation to the several receivers. The new

signal is lost or neglected if the server to which it is assigned is

busy upon its arrival. This has the advantage over the previous
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case, in that the server is not occupied with signals it can not

service completely.

Case I. All calls start service--In this system all calls are

assigned in order of arrival. It makes no difference in this case if

they are assigned in rotation to receivers or to the receiver which

is longest in service if none are free. If some are free, it may be

assigned to any free one. All calls will be serviced for either a

portion of a service interval or completely. None are lost or ignored.

However, when the server becomes free, it then begins service on the new

arrival whether or not a complete service can be made before the signal

terminates. In any event, if a server is occupied with a signal when

a new arrival appears, the signal in service is not affected. This was

not true for the non-separable case.

For all calls starting service, the probability that an arrival

will be lost is the probability that all receivers are busy when the

arrival occurs. This may be recognized if we note that as the re-

maining portions of each signal are processed, the first to become free

is the one that was first assigned.

Let c be the number of receivers or servers. The probability

that all c receivers are busy upon the occurrence of a new arrival is

given by

T

fsP2 = T (x)dx. (6.2. i)
C

O
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Using 6.1.3 for c arrivals we have

T
s

(_x)C-i -_x
P2 = _ ec-l'.

o

dE. (6.2.2)

This may be evaluated as

c-i

-kT _ (kT)iP2 = I - e s si: (6.2.3)

i=o

The effect of the number of receivers and the mean number of

arrivals in one service period (kTs) on the probability of an in-

complete service is shown in Figure 2. The continuous curves were

calculated from 6.2.3 and the indicated data points are the results of

a computer simulation of the all calls starting service model. The

agreement between analytical and simulated results is shown to be quite

close. In the lower values of probability, the number of lost arrivals

for the simulation was small and larger variances resulted.

Case 2. Independent receivers with delayed arrivals lost--ln the

second case, the new arrivals are assigned in rotation to the receivers

on the basis of order of arrival. If the receiver to which it is

assigned is occupied upon its arrival, the arrival is lost or ignored

by the servicing system. The next signal is assigned to the following
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receiver if it is free and similarly rejected if it is occupied. This

system has the advantage over the previous system considered in that

incompletely serviced calls will not occur and hence can not block a

subsequent arrival.

The probability that a call is not processed is in this case more

complex because it depends on the probability that previous calls

assigned to that server have not been processed. Let the probability

that a call is not processed be P3" Then we shall first require the

probability p(x)dx that the last arrival occurred at

service started at x = 0.

Hence,

p(x)dx = C Io Po(X)Pl (dx) + Pl(X)Pl(dX) +[

x + dx if

•.. ] , (6.2.4)

where C is a constant of proportionality.
o

After using 6.1.1, we have

p(x)dx = C
o

oo

PI (dx) I

i=o

P (x) (6.2.5)
n

or

p(x) = C _. (6.2.6)
o

To evaluate C , consider the integral of p(x) on the interval [O,T ).
o s

The integral of this is unity, given that the call that occurred at x
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was lost, since it occurs only x_T
s

This becomes

after the start of a service.

T

fs p(x)dx = i = X C T
o s

o

(6.2.7)

or

I
C - for o < x _T • (6.2.8)
o _T -- s

s

Then p(x) becomes

I i
p(x) = h - , for o _ x _ T . (6.2.9)XT T -- S

S S

We shall use this result to calculate the probability of an

arrival being lost for independent servers when delayed calls are lost.

This probability is denoted by P3 and for I-P 3 we have,

I-P 3 = the probability that the server is idle when the

arrival occurs plus the probability that the

previous call was lost and occurred at x referenced

to the arrival of the call in service, and that the

next arrival occurs y_T - x later.
s
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This becomes, for c servers,

oo

i - P3 = (I-P3) f _c (y)dy + P3
T
s

OO

f fTs p(x) T (y-x)dxdy
T c

s o

(6.2.10)

th

by noting that in steady state conditions P3 for the n arrival

equals P3 for the n-I st arrival. Substituting 6.1.3 in 6.2.10 for c

arrivals, we have

oo

1 P3 (I-P3)TJ k(kY)C-lc-l'.-by= e dy +

s

T
O¢ s

i kC(y-x) c-1 -k(y-x) dxdy
P3 ffT c-l: e

T _ s
s o

(6.2.11)

After integration and some rearranging, we have

i -P3 =

kT
s

C-I i

s (kTs) J

e
_T j '.

S • °

i:0 ]:0

c-I c-i i

c e
kT e i '. XT

s s

i:o i:o j:o

(kTs)J

j_

(6.2.12)
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and finally,

P3 =

1 - e

-kT
s

c-i

I
i = O

i

(XT s)

i'.

c-i c -I

kT i_ ° ( _. i kr kr-kr !

- kTs) s
S C e

i - e _, +
s s

= i--o

i

(XT)J

s

j'.

J=O

(6.2.13)

Equation 6.2.13 is shown graphically in Figure 3 as the continuous

lines. The data points are the result of a computer simulation for

this case. It is interesting to note that for c = i, 6.2.13 reduces

to

kT

s (6.2.14)
P3 - 1 + kT

s

If equation 6.2.14 is considered for small values of XT s,we have

P3 kT 3, for kTs_=-= i (6.2.15)

Comparing 6.1.7 and 6.2.15, it can be observed that we obtain an order

of 2 advantage in 6.2.15. This is because in 6.1.7 signal overlapping

causes loss from both signals, while in 6.2.15 the signal in service

is not affected by subsequent arrivals and only arrivals that occur

during a service are lost.



27

--Analytic

.1

_ .O1 _

>

< XT : 1.0
s

o

o

o

•001

_T =.8
s

T s =.

.000! -_-

s

.oooo I + _
I 2 3 4 5 6 7 8

Number of Receivers (c)

Figure 3. Probability of a Lost Arrival for Independent Re-

ceivers when Delayed Arrivals are Lost.
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Case 3. Dependent receivers where delayed calls are lost--In

the third case considered here, new arrivals are assigned to any re-

ceiver that is free. If none is free upon the arrival of any signal,

that signal is ignored by the service system an_ hence, lost infor-

mation results. This type of operation has an advantage over Case I

because in Case 3 all calls that can not be serviced completely are

ignored and do not occupy server time. Case 3 has an advantage over

Case 2 becaus_ for the previous case, signals are assigned in rotation

th
to receivers so that, for c receivers, every c arrival is assigned to

the same receiver if it is free; otherwise, it is lost. In Case 3, a

new arrival may be assigned to any free receiver and is not restricted

by the assignment in rotation. This will enable some arrivals to be

serviced that would be lost in Case 2. For the dependent server

operation, a computer simulation was performed by the use of Monte

Carlo techniques. The results are shown in Figure 4. It is easily

seen that there is only a small difference in magnitude between the de-

pendent situation and Case 2. Equation 6.2.13 may be used as an

approximation and upper limit for Case 3.

A functional diagram of the Monte Carlo simulation procedure is

shown in Figure 5. The net result is the number of serviced arrivals,

the number of lost arrivals, and the total number of arrivals (i0,000

in our case). The probability of an arrival being lost is calculated

on a per arrival basis by finding the ratio of lost to total arrivals

for each case of XT and c. The sample size is sufficiently large
S

that the sample variance is reasonably small unless the total number Of

lost arrivals is small. This occurrence naturally corresponds to low
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Figure 4. Probability of a Lost Arrival for Dependent Receivers

when Delayed Arrivals are Lost.
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probabilities of loss. This can be recognized from the analytic and

simulated data shown in Figure 3. The program was written in Daft

Programming language compatable with the IBM 7074 available at The

Pennsylvania State University. Daft is very similar to the more common

Fortran Programming language. This program is shown in Appendix B.

2. Redundant data intervals

We shall assume that instead of multiple receiver operation, only

one receiver is utilized• However, each source has the capability of

repeating the data interval several times when it does transmit. Upon

the arrival of any signal with the receiver occupied, the signal

"waits" until either the server becomes free or the signal duration

expires. This type of operation enables the signal to be completely

served on any data interval except the last, depending upon when the

server becomes unoccupied. The signal may be incompletely serviced if

service does not begin before the start of the last data interval, but

does begin service before the signal expires.

Let:

th
y = the waiting time of the n arrival, i.e., the

time between arrival and start of service of the

th
n signal,

istx = the waiting time of the n arrival,

K = the number of the data intervals, i.e., the length

of each source transmission is KT ,
S

t = time between adjacent arrivals,



32

' th
Wn(Y) = probability density of n arrival waiting a

time y for service to begin, and

' st
W (x) = probability density of n-i arrival waiting an-i

time x for service to begin.

Then,

y __

x + T - t if x + T _= KT
S S-- S

KT t if x + T =_KT .
S S -- S

(6.2.16)

After rearranging, this becomes

tIx + T - y for x + T "= KT
S S -- S

KT - y for x + T ___KT .
S S S

(6.2.17)

!

Consider, first, the probability density Wn(Y ), for y_'= Ts.

we have

!

For Wn(Y),

!

Wn (y) = probability density of y, given X+Ts>_KT s plus

the probability density of N given x+T c KT
S-- S

where x_o pIus the probability density that

YCTs, given that x = o.
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T s (Kfl) T

t t S

Wn(Y) = Wn_l(X) TI(KTs-Y)dY +

(K-I)T
S 0

!

Wn_ i (x) $i (X+Ts-Y) dx

+ Wn_l(O) $1(Ts-Y) for y_T .
s

(6.2.18)

!

Likewise, W (y) for T _
n s-- y-KTs'may be described by

!

Wn(Y) = probability density of y, given x+T =_KT plus
S-- S

the probability density of _ given x+T _KT .
s-- s

This becomes

KT (K-I)T
S S

' r ' / ,Wn(Y)_= W (x) Tl(KTs-Y)dx +__ n-1 Wn-1 (x) $1 (X+Ts -y)dx"

(K-I)T y-T
s s

(6.2.19)

If we concern ourselves with the steady state stochastic processes

where the mean number of arrivals is equal to the mean number of

services started, including partial and complete services, then,

! ! !

Wn_l (e)_Wn(e ) _W (e)
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and

Wn_I(O)_W o

Using this notation and 6.1.3 for n = i, 6.2.18 and 6.2.19 become

KT (K-I)T
S S

' f ' -k(KTs-Y) / ' -X(X+Ts-Y)W (y) = W (x)ke dx + W (x)ke

(K-I)T o
S

dE

-k(Ts-Y)
+ W he

0 (6.2.20)

for y__ T , and
S

!

W (y)

KT
S

f
(K-I)T

S

, -k(KTs-Y)
W (x)ke dx +

(K-I)T
S

/
y-T

S

, -k(X+Ts-Y)
W (x)ke dx

(6.2.21)

for T _y_KT .
S m S

For W ,
O

W
O

O

/= W (y)dy.

-OO

(6.2.22)
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KT
S

/
(K-I)Ts
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!

w (x)dx: W(KTs)- W [(K-1)Ts],

then 6.2.20 becomes

, -ky [ -XKT s

W (y) = ke [e

KT

fs w -kx -kTs](l'D °) + (x-T)e dx + W e for y_T
S O S

T
S

(6.2.23)

and 6.2.22 becomes

O

fW = W (y)dy = (I-D)e
O O

-(DO

-kKT
S

KT

T
S

, -kT

W (X-Ts)e-kXdx + Wo e
S

(6.2.24)

Therefore,

' -ky
W (y) = ke W

O
for y _ T .

S
(6.2.25)
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Solving for W
o

in 6.2.24, we have

W __

o

KT
s

-XKTs /
(I-D)e +

o
T
s

-Xx
I

W (X-Ts)e dx

-XT
s

I - e

(6.2.26)

For o_=y-=¢ <T ,
s

w(_)

C C

/ /= W (y)dy =

-OO -OK)

-Xy X¢

Re W dy = W e
o o

(6.2.27)

!

and W (e) = XW(¢). (6.2.28)

For T "=y'=¢'=KT , let z = x + T
S m S S

in the last term of 6.2.21. Then 6.2.21 becomes

KT
s

W (y) = Xe (l-Do)e + W (Z-Ts)e d

Y

(6.2.29)
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w(e) f W_Ts_f= W (y)dy = + W (y)dy.
T

-OO s

(6.2.30)

This can be shown to reduce to

KT

I KTSs x1W(c) e (l_Do) e s= + W (X-Ts)e dx + W(¢-T )s

C

or

!

w(_) -- w (c) +W(c-T).
k s

(6.2.31)

(6.2.32)

Then, for o_KT , combining 6.2.28 and 6.2.32, we have
s

!

W(e) = _ + W(e-T ) u(¢-T ),
_. s s

(6.2.33)

where u(c-T ) is the unit step function such that
s

u(¢-T ) :
s
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Now to solve 6.2.33, we may resort to Laplace Transforms.

OO

-S_qO(s) = e

0

W(e)de. (6.2.34)

Taking the transform of both sides of 6.2.33, we obtain

s_(s) -W -sT
O S

_(s) - k + e _(s) (6.2.35)

or

_(s) i
W -kT

0 S
s-_ + Re

(6.2.36)

This can be shown to converge for s _k
r if s = s + j s i,r

where s
r

Then

and s. are the real and imaginary parts of s respectively.
i

oo

I i -isT
q0(s) = (-_) e s

W o (s_X) i+l
i=O

(6.2.37)
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Taking the inverse transform of 6.2.37, we have

CO (-X) i (_-T)i -)_(e-iTs)

I e u(_-iT )

S S

=
w i'.0

i=o

(6.2.38)

Let represent the largest integer such that --_T
S

Then

s -I

W(_) = Wo

i=o

(_)_)i (_-iT)ie
S

_(c-iT )
S

i!

(6.2.39)

Also,

W(KTs) = i = W °

K-I

i=o

XT (K-i)
S

e

(6.2.40)

and

W _-

o K-I

E
i=o

-XTs)(K-i)]i e XTs(K-i)

i !

(6.2.41)
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Then from 6.2.39 and 6.2.41, we may find

D
o

K-2

l----O

_kTs)(K_l_i ) ]i

i'

_T (K-l-i)
s

e

(6.2.42)

or

W[ K-I Ts]:

K-2
kT (K-i-i)

I [(-kTs)(K-l-i) ]ie s

i=o

K-I

S_kTs..K_ i. i ekT (K-i)

i'
i=o (6.2.43)

P _

Since W [ (K-l)Tsl is the probability that an arrival will wait

(K-I)Ts or less, I-W[ (K-l)Ts] is the probability that an arrival

must wait more than (K-I)T s for service, and because the signal

duration is KT , this implies that only an incomplete service is
s

possible. Therefore,

P4 = I-W [(K-I)Ts] "
(6.2.44)

Figure 6 shows analytical curves of the probability of an incompletely

serviced arrival for specific values of kT versus the number of data
s

or information intervals. The data points on the curves are the re-

suits of a computer simulation of the servicing operation.
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VII. PROBABILITYOFINFORMATIONLOSS, II

Misinterpreting the Symbols

In this chapter we shall consider the information loss due to an

erroneous decision concerning which symbol was actually transmitted

when the received signal is corrupted by noise and fading in the

cormnunications channel.

The probability of symbol error is necessary for a complete

calculation of total information loss probability. The results of this

chapter and the previous chapter will be combined in Chapter VIII to

provide the total information loss probability for the whole system.

Lindsay (1964) has considered the general case of error proba-

bilities in an N state system with multichannel reception. His result

includes, as a special cas_ the single channel problem of interest here.

However, the derivation is very complex and several intermediate steps

which provide a more complete understanding of the decisional and

error processes are not readily available in published literature. It

was, therefore, desirable to develop independently a unified and

coherent treatment of the results needed in this study, starting with

the simpler assumption of single channel. It was considered that this

treatment allows a more complete understanding of the decision process

on which the final error rate was based. The special case where we

have a single channel and binary state symbols can also be found from

Lindsay's more general N state expression, and was also derived

previously in Turin (1958).
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Assumea frequency shift keying system in which the symbols are

identified by the transmission of discrete frequencies w. for a period
i

2rr
T, such that are unique integers The symbols are then repre-_.T "

1

sented by the time function

x.(t) = S cos _ t, for mT_t _ (m+l)T,
l o i

where m is an arbitrary integer, and

(m+l)T

__i f _iJ'E xi(t ) xj(t)dt = .

mT

where
_Jij = O for i # j and _ = i if i = j, and E is the trans-

mitter energy for each symbol. The set of frequencies w. will be de-
i

th
noted by _ . When the i symbol state is transmitted at (t - T ),

o p

the signal y (t) is received at a time equal to the propagation time

(_p) later. Let Ao/So be the average ratio of received to transmitted

amplitude for free space conditions, for the duration of the symbol

(T). In terms of the receiver time,

y(t) = a Ao [ cos(00.tl + OIl + n(t) ,

where (a) is the magnitude of the fading variable, O is the random

phase shift, and n(t) is assumed to be additive white Gaussian noise.
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The fading factor (a) is assumedto be slowly varying so that (a) may

be assumedconstant for a symbol duration.

7.1. Fadin_ Phenomenon

The fading factor (a) may be recognized to be a random variable

in most applications where atmospheric propagation is utilized. For

generality, a fading relationship may be chosaq consisting of a constant

fading term and a random component. This is illustrated in Figure 7.

y(t) may be represented by

y(t) = Re A ° we + be + n(t).

(7.1.1)

In this context _e-J6 is a fixed or specular component and be -j_ is

a random or scatter component.

Assume that b has a Rayleigh distribution and _ obeys the uniform

distribution, for an interval (0,2_), and b and _are independent. Then

and

p(b,q0) = p(b) p(q0) (7.1.2)

b -b2/2_2

p(b,_0) - 7-- e • (7.1.3)

2r_ b
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Since

2 2 2
a = x +y , (7.1.4)

x = b cos q0 + _ cos_ , and (7.1.5)

y = b sin q0 + (_ sin6 , (7.1.6)

then

2 b 2 2a = + c_ + 2b_ cos (qO-6). (7.1.7)

But also from the Law of Cosines

b2 2 2=a +_ - 2a_ cos (_0-_) . (7.1.8)

Changing variables,

p(a,@) = p [b(a,e), q(a,8)] IJ(b,qo;a,8)l , (7.1.9)

where [Jl is the absolute value of the Jacobian. From 7.1.8 we have

_b a- _ cos(@-5 )

ba - b (7.1.10)

and

_b (e-6) (7.1 11)
- a_ s in .



From 7.1.7 we have

4?

_a = bc_ sin (q0-_) _-

a

b_ sin (_0-_)
(7.1.12)

and

_0 = bc_ sin (q0-_)
(7.1.13)

Then from 7.1.10, 7.1.11, 7.1.12, and 7.1.13

J (b,_; a,O)

a

b

Therefore, the probability density for the fading factor in polar

coordinates is

p(a,O) - a
2 e

2_ b

i [2 22 a +_

2ob
- 2a_ cos (0-_)]

(7. i. 14)

This is the well known Rician probability density function.

This particular density function has an advantage over the more

common assumption of Rayleigh fading. It incorporates a constant

fading component as well as the Rayleigh term, and, hence, it can be
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manipulated to provide a constant fading term, mixed fading, Rayleigh

fading, or an approximate Gaussian fading.

7.2. Decision Rules

We require the probability that x.(t) was transmitted, given that
i

y(t) was received. Using the Bayes equality formulation, this is

P [xi(t)/y(t) ]

p [y(t)/x i(t)]

= pE_y_t_] _[xi_t_]
v

If we assume that each x.(t) is equally likel_ we have for i = 1,2,...
i

n , where n is the number of states for each symbol,
s s

PExi_t_]=_n
s

SinceP[xi_t_]iskno_andp[y_t_]is_ixedformgivenreceiver
the problem of computing P[xi(t)/y(t)] is just the problem of

computing the likelihoods A i = p [y(t)/xi(t) ] Also, the noise

n(t) is just

P

n(t) = y(t) - aA cos|w t ÷ el (7 2.1)
o L i j
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m

A
Therefore, the likelihoods l\ . are just the probability densities

l

that the noise waveform is given by 7.2.1 for each possible value of i.

Woodward's formulation, given in Woodward (1953), for p In(t)] ,Using

we have

1)n2-_-- (t)dt
o

p In(t)] = Ko e = Ai, (7.2.2)

where N is the noise power density and K is a constant of pro-
o o

portionality. Using 7.2.1, p In(t)] becomes

p(y/x.,a,@) = K
i o

I/E J-_-- y(t) - aA ° cos (_0it + @) 2dt

o

e

(7.2.3)

or

p(y/x.,a,@) = K
i o

T

- o y2(t)+a2A cos

o
e

(wit+@) -2y(t) aAocoS (wit+@)]dt

(7.2.4)
t
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°

B(y) = K e
o

-_o f y2(t)dt (7.2.5)

in 7.2.3 and the free space received signal to noise ratio (R) be

T

1 f A 2 2R = -- cos (w.t + O)dt.
N o 1
o

o

(7.2.6)

Then 7.2.3 becomes

p(y/x.,a,O) = B(y) e
i

-a2R +-
2aA

o

N
o

T

f y(t) cos (wit+O)dt.

o

(7.2.7)

Using the expansion

cos (wit+@) = cos wit cos O - sin wit sin O (7.2.8)
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in 7.2.7, we have

2R k-a +

p(y/x.,a,@) = B(y)e
1

T

2_ / [ ]

o y(t) cos _.t cos @-sin 00.t sin O dt
N _
o

(7.2.9)

Let

T

X°l = _AoY(t ) cos w.lt dt (7.2.10)

and

fT AoY(t)Y. = sin _0.t dt •
l l

O

(7.2.11)

Then 7.2.9 becomes

p(y/X.,Y.,a,@) = B(y)e
i 1

_a2R + 2a
N (X i cos @
o

Y. sin e)
i

(7.2.12)



52

Now let

z_ = x_+y_
i l l

(7.2.13)

and

-i Y"l

_i = tan X. '
i

for o__i__ 2_.
(7.2.14)

Then,

_ a2R +

p(y/Z.,a,8,_0i) = B(y)e1

2a

o

(7.2.15)

Using 7.1.15 and the fact that

OO

p(y/Zi,q0 i) = f
o

o_ p(a,8) p(y/Zi,a,e,q0i)dad8,
(7.2.16)

7.2.15 becomes

p(y/Zi,_i) =

2

2

-2_ b

B(y) e

l+gp

+ i (_/2 (l+gp)
(7.2.17)
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where

4Z2 A 2 4Z.
D - l o _ l

i N2 + 4 + 2 cos (_0i +6). (7.2.18)
o _b N (_bo

Also define the ratio (g) of the received energy from the random com-

ponent to the recopy=u"_ energy _vLLL=--^--+_L_ _-_--_=_cemponen_ _

2
2_R Z_b

g - 2R 2 ' (7.2.19)

and the energy of the fixed channel is

2

p = (_ R. (7.2.20)

It is necessary to note that

I (x)
o

2_

i f x cos (_i + O)
2_ e d_ (7.2.21)

o
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is the modified Bessel function and that

oo

-a x e b_4a2

x e I (bx)dx
2

o 2a

o

(7.2.22)

Similarly,

24

p(y/Z i) = j P(Y/Zi'_°i) P(_0 i) d_0i •
(7.2.23)

i

Using this and 7.2.17 and for p(_i ) = _ , we have for noncoherent

reception,

E2zi  j
P(Y/Zi) = l+gp Io T+_

- 2(l+gp)

e

2

Ob

(7.2.24)

Equation 7.2.24 is the equation of the probability density of y(t),

given Z., where Z_ is the sum of the squares of the integrals of the
1 l

t and sin _.t, re-
signals formed by multiplying y(t) by cos _i l

spectively. Z.is precisely the envelope of the cross correlation of

y(t) and the i th stored frequency. This type of receiver is shown in

Figure 8. Since there is a receiver similar to Figure 8 for every

symbol state (ns), or since frequency shift keying is used, there is
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one for every frequency of the set Q . The decision as to which
O

symbol state was transmitted is accomplished by choosing the maximum

value of Z. where j = 1,2 .... n . The w. associated with the
j s j

maximum Z is denoted by wj, and_. implies _.. The value of each Z.j J J J

is sampled at t = T and the maximum selected. This type of reception

may be accomplished alternately by the use of matched filters, such that

each filter impulse response is given by

hj(T) = Ao cos [wj(T-T)] (7.2.25)

The envelope of each filter output is similarly sampled at the end of

each symbol interval, and the largest output is selected to imply the

state which was transmitted.

The selection of the largest envelope sample is equivalent to

selecting the largest likelihood

A

A . = p(y Z_I) (7.2.26)
i

This type of posterior computer minimizes the error probability when

the a priori probabilities of each symbol state are equally likely

and are transmitted with equal energies.
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7.3. Probability of __ Error

In order to calculate the probability of making an error, we

shall calculate, first, the probability of making a correct decision.

To do this, it is necessary to find the probability distribution of the

envelope power for the different symbol state receivers. The proba-

bility that the symbol will be correctly interpreted is just the

probability that the envelope power is greatest in the receiver whose

stored frequency corresponds to the symbol state frequency thaL w_

transmitted. The envelope power will be calculated assuming both

signal and noise. For the n -i receivers corresponding to symbols or
s

frequencies which were not transmitted, the received power can be

determined as the limiting case where the received signal component

tends to zero.

For one of the receivers, the received voltage is a combination

of the signal and noise components, as expressed previously in 7.2.1,

and rearranged here for convenience as 7.3.1. This is given as

y(t) = aA cos (_.t + @) + n(t). (7.3.1)
o I

Now assuming

E[ n(t)] = O, (7.3.2)

the expected value of Xo in 7.2.10 is
l

E(Xi) = aEr cos @ (7.3.3)
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and the expected value of Y. from 7.2.11 is
i

E(Yi) = -a Er sin O, (7.3.4)

where

T

A2 _ 2E = cos (w.t + 8) dt.r o i (7.3.5)

If n(t) is assumedto be wideband, then the noise auto-

correlation function _(T) becomes

OO

i fN N
o iw_ o

90(_) = n(t) n(t-T) = _ -_ e duo = _- (T).

-OO (7.3.6)

The variance about the mean for X. and Y. is
I i

2
2

= _X.
l

(7.3.7)

and

2
2

= _yo
1

(7.3.8)
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7.3.7 and 7.3.8 may be shown to be

2 2

qX. = qY. -
1 l

EN
r o

(7.3.9)

Similarl_ E(XiYi) may be shown to be

E(XiYi) = O. (7._.10)

X.z and Y.z, given a and @, are independent and subject to the normal

or Gaussian probability density function. Then

r r ](XI a E cos @)2 + (yi+ a E sin @)2

i ErN oeP'Xi'Yi-a'e" - mE N
r o

(7.3.11)

Let

M•

i

X 2 2•+Y.
i 1

E N
r o

(7.3.12)

and

-i Y"i
¢Pi = tan X.

l

(7.3.13)
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M. may be recognized as a normalized envelope to noise ratio. Now,
1

changing the variables, 7.3.11 becomes

P(Mi,_i/a,8) = IJ(Xi,Yi;Mi,_i)l

-M.-a2R + 2a M_TR cos (8+_ i)
l

e

mE N
r o

(7.3.14)

where

EN

IJ(Xi,Yi;Mi,_i)l- 2 ° (7.3.15)

Then 7.3.14 becomes

I

P(Mi,_0i/a,8 ) = _ e

-M i -a2R+2a M_iR cos (@+_i)
(7.3.16)

Now, recognizing that

P(Mi,_0i,a,@ ) = P(Mi,_0i/a,@ ) p(a,@)
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we may substitute 7.3.16 and 7.1.14 in the above equation, and this

yields

P(Mi, q0i,a,O) _ a
42 b e

i 2_b + c_ + a2(l + 2_ R)

2
_b

- a D cos (O+_) 1

(7.3.17)

where

2

D 2 : 4M.RI + _4 + 4 M_iR _ cos (q0i +6)

C_b (_b

(7.3.18)

and

-I
= tan

2M_iR sin q0i - _2 sin6

_b

2M_iR cos q0i - _ cos 6

_b

(7.3.19)

Eliminating @ by integrating over its range (0,2_) gives

+ (y + a (I + 2_ R)

a 2Gb2
P(Mi'q°i'a) - 2 e I (aD).o

a_ b (7.3.20)
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The variable (a) may be eliminated, similarl_ by integrating over its

range (O,Oo), and this becomes

P(Mi,£0 i) =

[_Mi_ b2+_ 2 )
_ .
[ _,b

+

2 12 2 ]4_i _b+_,_J+4o,V_i__o__o_.+6)
]2(l+2a2R)

(7.3.21)

Now, integrating q0i over the range (0,2_) yields

FM i + 2R]

e o
P(Mi) = • (7.3.22)

2

l+2O'bR

The physical meaning of the terms of 7.3.22 may be more readily seen

by recalling from 7.2.19 and 7.2.20 that the received ratio (g) of

the random component to the fixed component is

g = 2_2/_ 2 (7.3.23)
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and the received signal to noise ratio in the fixed channel (p) is

2
D = _ R. (7.3.24)
I'-

Using 7.3.23 and 7.3.24, 7.3.22 becomes

p(M i) =

Mi + P
l+gp

[
I + gp (7.3.25)

Equation 7.3.25 gives the general case where both signal and noise are

present, and, thus, corresponds to the one receiver whose stored frequency

is the same as the frequency of the transmitted symbol. Let the sub-

script i = h denote the receiver with signal and noise. The envelope

power for the receivers where the stored frequency differs from the

transmitted frequency will contain noise only. The probability

density function of the envelope power may be calculated from 7.3.25

by considering the limiting case where the received signal power

tends to zero. For this consideration,

g _ O,

p _ O, and

_ O.
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-M.

P(Mi) = e l , (7.3.26)

since I (O) = i, and for i = h,
O

p(M b) = (7.3.27)

1 +gp

The probability of making a correct decision is the probability that

each receiver envelope power M., where noise only is presen_will be
l

less than the envelope power M_ for the receiver with the signal and

noise. Then for n possible symbols, n - i receivers will contain
S S

noise onl_ and one will contain the signal and noise. The probability

of being correct is

l-,Pe(ns) = p(M h) P(M i) dMiJ dM h
O O

(7.3.28)
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7.3.28 becomes, after substituting 7.3.26 and 7.3.27,

l-Pe(n s) =

Oo

/ nl 1n -iP_Zn_o_l_nSne
o

(7.3.29)

or

n -i
s

Pe(ns) = I

n=l

-npl (n+l+ngp)
n+l

(-I) [ns-ll e

n + i +ng_

(7.3.30)

For the special binary case where n = 2, we have
s

P (2)
e

e- P/ (2+gp )

2÷gp
(7.3.31)

For gp<<2, 7.3.31 reduces to

e-p� 2
e (2) "
e 2 (7.3.32)
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This result is shown for the graph indicated by g _ .01 and occurs for

ranges of Pe(2) and p as shown. In this case, the probability of

error is independent of g. This corresponds to more energy in the

specular channel than in the random channel. Figure 9 shows that for

larger values of g corresponding to more energy in the random channel

than in the specular, the probability of error is smaller for values

ofp_lO. If the random to specular ratio is _.i, the probability of

error falls off faster than for g _ i and for p =_3. If gp_ 2,

7.3.32 becomes

- i/g
-. e (7.3.33)ee(2) -

gp

If g=_=_l, 7.3.33 becomes

P (2) -'- I (7.3.34)

e gp

This corresponds to most of the energy being in the random channel and

approaches the result for the Rayleigh fading assumption.

The results of symbol error probabilities will be considered in

the next chapter, where we shall find the total system information loss.

Equation 7.3.30 appears in a similar form in Lindsay (1964) as a

special case of his more general expression, and 7.3.31 appears,

similarl_ in Turin (1958). The special case of binary signals, de-

scribed by 7.3.31, is shown in Figure 9.
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Vlll. RESULTSANDEXAMPLES

8.1. Total Information Loss

In Chapter VI, the results of information loss due to the

servicing procedures were considered. In Chapter VII, we have con-

sidered the other contribution to information loss Pe(ns) which is the

result of misinterpreting the transmitted symbol. In a message m o

symbols long, assuming independent trials for interpreting each

symbol, we have

where PM is the probability of an error in a message mo symbols long,

.th

and Pe(ns,J) the probability of an error in the j symbol.

The probability of the total information loss for the system,

then, is given by

PT = I- (I-PI)(I-PM)

or

PT = PI + PM - PIPM " (8.1.2)
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The probability of total information loss, which includes losses

from both the servicing procedures and the symbol error, is shown in

Figure I0. From Figure I0, it can be seen that for a given value of

PI' the probability for loss from servicing, the probability of total

system loss, PT, is then within 10% of PI' if the probability of se-

lecting the wrong symbol PM' is less than .IPIo Referring to the

curves of Figure i0, we can see that effort to reduce PT below I.i PI

will be inefficient. The same result is also true if PM is fixed and

the variation of PI considered. If PM = PI' then PT will be approxi-

mately 2P I for PI = PM _ .I. Using these results, we are able to

conclude that if either PM or PI is fixed by some physical restriction,

optimization procedures or designers choice, the most reasonable value

for the other (PI or PM% which was not fixed, is not less than one tenth

the fixed value, and not more than equal to it. This results in a

total loss probability, which is between twice and i°I times the fixed

value. Efforts to reduce the probability of loss so that it approaches

the fixed value more closely will be inefficient, and the probability

of loss can not be less than the lowest value of PI and PM"

In the general case, achievable values of PI and PM will be

related to cost, and the most economical design which can achieve a

given total value of PT may be obtained by minimizing the cost function

that is associated with the particular system employed.

8.2. Criterion Functionals

The results of Chapter VI may be utilized to form criterion

functionals for the purpose of obtaining optimal performance for a
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given system configuration, or for determining which of the possible

system configurations gives a better performance subject to specific

constraints.

Actuall_ the determination of criterion functionals is a subject

for a complete study which can be best accomplished by the systems

analyst after somerequirements or limitations are imposed.

In this study, functionals may be proposed for illustrative pur-

poses, but would hardly be assumedto actually conform to the desired

results of a specific practical problem.

Twobasic types of functionals are easily brought to mind. The

first is a multiplicative type of functional where all the variables

in the functional appear as functions of the variables in a multi-

plicative context. For instance, if bandwidth (BW) readout time

(S), and probability of lost information (PT) are the only factors to

be considered, the functional F may be described by

FI = (S) (BW)(PT)

Differences in relative importance of the factors might be

accomplished by functionalization of the parameter; i.e., if readout

time is more important than the other factors, we could use

2
FI = S BW• PT' or (8.2.1)

S
FI = e BW• PT ' (8.2.2)

or a similar result.
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Of course, once a criterion has been decided upon, the problem

becomes to optimize FI by finding _, _, _T such that FI is an

optimum (minimumfor this example). This type of criterion functional

has the disadvantages of being very sensitive to errors in specifying

a satisfactory relationship of the parameters, and of being difficult

to optimize because of the inherent non-linearity, subject to con-

straints.

An alternate functional is the additive cost functional, where

each parameter and the associated cost is combined linearly. If CS is

the cost per unit time of readout time, CB is the cost per unit band-

width, and C the cost for each unit of probability, we mayuseP

F2 = (Cs)(S) + CB(BW)+ CpPT • (8.2.3)

This type of formulation has the advantage of simplicity in optimi-

zation, but the disadvantage of assuming a linear cost relationship

for each parameter.

8.3. Sequential Interrogation

Before we investigate the sequential interrogation case, we

shall first require some definitions and symbols.

Let:

TI = the interrogation or identification word lengths,

TM = time for complete transmission of the source,

N = number of sources,
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S = readout time for each source to transmit at least

once,

ffs = S/NTt or S/NT M ,

7s = SX/N

T = total time for interrogation and response, and
t

tD = delay between interrogation and response.

When each source is separately keyed on so that no overlap of

data transmission times can occur, the probability of loss due to re-

ceiver overloading is, of course, zero. Also, assuming the source and

the interrogator have the same symbol time (T),

TM = Ts ' (8.3.1)

2n

BW - s (8.3.2)
T '

Tt = _ + tD + TI , (8.3.3)

S = NT t , and (8.3.4)

= _!i (8.3.5)
T

t

8.4. Random Arrivals not Separable

Since the arrivals are not separable, along with the data

transmission, each source must transmit an identification code so that

the source may be uniquely identified.
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Hence,

TM = TI + TS (8.4.1)

Since the sources transmit randomly, the total readout time is greater

than NTM. It will depend on the range of the allowable time of trans-

mission of each source. Therefore, we must define

S = _s NTM (8.4.2)

i. Let be the total number of transmission times thatwhere _s _s N

have occurred in S, hence, the arrival rate is

_s N
k = -- . (8.4.3)

S

Since the sources are not separable, they must operate on the same

frequency set, hence,

BW _-

2n
s

(8.4.4)

The probability of losing information due to overlapping trans-

missions is given in 6.1.6 and is reproduced here as 8.4.5. PI is

given as

-2XT M

PI = 1 - e (8.4.5)
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Random Arrivals wit___h_hSeparability

Again, we have,

S = 7sN/k and (8.5.i)

TM = KTs (8.5.2)

The bandwidth depends on whether the signals are separable by

frequency or not. If separable by frequency,

BW = 2n N/T , (8.5 3)
S

if not,

BW = 2n /T (8.5.4)
S

The probability of lost information on each arrival depends upon the

system being considered, and will be discussed later.

8.6. Cost Criterion Functional

Let!

C I = the cost of the interrogation capability,

CR = the cost of each receiver,

CK = the cost of each data period per message,

C U = the cost of obtaining the separability

capability other than by frequency, and
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are defined as before.

Then

F 2 = CIA + (BW)C B + SC S + c CR + KC K + PTCp + ¢C U •
(8.6.1)

A and ¢ are either 0 or i, depending on the applicability of C I

and CU in the system under consideration. The cost functional may be

used in two different ways. The first is to maximize the performance

of a given system. The second is to select the better system from

among the various possibilities.

Consider the system where the arrivals are random, but not

separable. Then if PM<__ .i PI and PT = PI'

-2XT M2n _sNCs

Fb - TS CB + __X + CR + CK + Cp (l-e ) (8.6.2)

Let:

Us = 2,

N = 5000,

C S = 2,

TM = i, and

C = 10 5 .
P
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To find _ such that Fb is a minimum, we need only find

This results in the following expression:

dFb
dk

_ 0.

k2e -2X = .1 (8.6.3)

Hence,

d2F.
D

k = .55 for a minimum, since _ 0.
dk 2

Next, consider the case where we wish to find the best system

among the various possibilities.

The cost functionals for sequential interrogation become

2n
s

F -
a T CB + NTtC S + CK + CR + CI, (8.6.4)

for random arrivals without separability,

2n

s NTMC S + CK + CR + PTCpFb = --_- CB + u s
(8.6.5)

for random arrivals with separability by frequency,

2nsNC B NYsC S
F - +
c T k-- + CK + c CR + PTCp,

(8.6.6)
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and

2nsNC B NYsC S

Fd - T +----i-- + KCK + CR + PTCp
(8.6.7)

For random arrivals with separability by other than frequency,

2nsC B NYsC

F - + _ + CK + cCR + PTCp + Ce T _ U'
(8.6.8)

and

F m

t T

2nsC B

+ N_sCsx + KC K + CR + PTCp + CU. (8.6.9)

Let the following parameters take on the specific values as

shown.

T = 93 C = 104
t p

TM = 83 CB = 1

Ts = 70 CS = 1

N = 5000 CK = 300

Us = 2 CR = 400

ns = 2 CI = 107

PI = .i CU = 107

PM = "IPI
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Then using the above, we can find

F = 10,007,623,
a

F b = 202,332 with X = •05,

F = 1,412,500 with X = 1.0, c = 3, K = 1, dependent,
c

F d = 1,415,100 with X = 1.0, c = 1, K = 4,

F = 10,012,780 with X = 1.0, c = 3, K = 1, dependent, and
e

Ff = i0,015,380 with X = 8, c I v _ I.

Using this criterion and with these values, one would select Fb as the

minimum and, hence, the optimum system solution would be to use random

arrivals without separability. The situation is altered if the same

values are specifie_ except that PI = .001 instead of PI = .i.

In this case,

F = 10,007,623,
a

Fb = 10,001,342 with _ = .001,

F c = 1,427,500 with X = .8, c = 3, K = i, dependent,

Fd = 1,427,600 with X = .8, c = I, K = 4,

F e = 10,013,390 with _ = .8, c = 3, K = i, dependent, and

Ff = 10,013,490 with X = .8, c = i, K = 4.

same.

For this situation, the minimum is Fc, although Fd is about the

The system selected would use random arrivals with frequency

separation with either c = 3, K = i, dependent receiver operation, or

c = I, K = 4 and X =.8.
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While it must be obvious that these examples are somewhatcon-

trived, they are only meant to demonstrate how the results derived in

the text can be applied to systems decisions. In an actual system to

be designed, those restrictions and specifications attending its

utilization will be required to perform optimization or decisional

processes. They, of course, will differ in value from those assigned

here. However, the methods described here should be applicable.
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IX. DISCUSSION

In order to consider the major contributions to the problem of

information loss in a large information collection system, it was

necessary to consider the information lost by an erroneous decision as

to what symbol was actually sent, in addition to information lost by

incompletely serviced or lost arrivals.

For information lost by erroneous symbol interpretations, we

assumedthat the channel was a noisy, fading medium. The noise was

assumedto be Gaussian white additive noise and the fading variable was

assumedto follow a Rician distribution. The advantage of the Rician

distribution is that it is more general than the normally assumed

Rayleigh fading variable, and by the proper selection of constants can

be made to reduce to a constant fading, Rayleigh fading, mixed fading,

or approach the Gaussian fading distribution.

A maximumlikelihood type decision process resulted in the re-

ceiver shown in Figure 8 and a symbol error probability given by

equation 7.3.30. The special case of binary symbols is given in

equation 7.3.31 and is shownin Figure 9. For values of g (ratio of

energies in the randomto specular channels) which are less than i,

the probability of error falls off faster than for g___l, where the

signal to noise ratio for the specular channel (p) is greater than 3.

For values of g__.01, the probability is independent of g for the

range shown in Figure 9 and expressed by 7.3.31. For very large
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values of g and small values of_, the probability approaches the

result in 7.3.34.

Equation 8.1.2 and Figure I0 show that the total information

loss probability for ordinary use would be between i.I and 2 times

greater than the largest value of PI and PM' if both are _ .i.

Attempts to reduce the probability of total loss below i.i times the

largest value are very inefficient.

For information lost because the serving system is overloaded

with arrivals, it was assumedthat a master scanning receiver could

find, assign, and keep track of each new arrival and past arrivals, if

necessary, so that information is not lost by the scanning master

receiver. This assumesa memorycapability associated with the master

scanner which keeps track of each arrival, new or old, as time pro-

gresses and as each arrival leaves the system, whether serviced com-

pletely or not. It also might imply that each arrival has a short

interval of transmission designed to allow the master scanner to find

it before the actual data begins, but this interval would be small com-

pared with a service period.

The slave receivers are assumedto be capable of being assigned

to any potential arrival and the time required for complete servicing

is fixed and uniform for each arrival. This can be justified by the
w

telemetry type of data considered and the fact that each source

samples the same environmental parameters. The large number of

sources following the same type of probability distribution which de-

termines when each source transmits, and the assumption of trans-

mission independence leads to the Poisson distribution of arrivals.
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However, should dependenceof only a small number of sources' occur, we

would still have a close approximation to the actual process with per-

haps a different value of meanarrival rate.

If data redundancy is considered whereby the transmission of

each source contains several identical data periods, we are able to

note from Figure 6 that for the higher values of _T , the probabilitys

does not fall off very fast, and a low probability of lost information

due to receiver overloading can only be accomplished by the addition o£

manydata periods. The analytical expression developed which describes

this case is given by equation 6.2.44. The advantage of data re-

dundancy is that if upon arrival the server is found to be occupied,

the signal can "wait" several service periods for the server to become

free. If the number of data periods per arrival is greater than the

necessary waiting time by at least a service period, then a complete

service can still be performed. The data redundancy capability may be

useful where a systems modification of an existing system is required

to accommodatemore sources, or to reduce the losses, and the reception

devices are not readily accessible, such as with an orbiting satellite.

This means that the sources are required to be controllable. It can

also be noted in Figures 2, 3, 4, and 6 that the relative efficiency

of adding more redundant data periods is less than adding more servers.

Conside$ now, the case where additional servers are used in a

service discipline where no calls are lost, but they may be incomplete-

ly serviced. Wecan find from Figure 2, that the probability of an

incomplete service becomessmall faster than for redundant data

periods, especially for large values of XT . The formulation
s
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describing this performance is given in equation 6.2.3. It can be

noted from Figure 2 that larger values of XT may be used (_Ts__l.)S

with a few servers with a satisfactory probability of loss. This is

not true for the results shown in Figure 6. This type of serving

discipline is useful because every arrival is eventually assigned to

some slave and processed at least partially. This type of discipline

is easier to implement in the sense that every signal is accounted for

and no record keeping is required. The disadvantage is, of course,

that arrivals that can not be completely processed begin service, and,

hence, their time in service is wasted.

The advantage of additional servers is obvious. The more

servers, the smaller the probability of loss becomes. The cost and

ease of implementation, however, are factors that must be considered

before deciding whether to add servers or data periods.

In the case where arrivals which can not be serviced immediately

are lost, we have two types of operation, with either independent or

dependent servers.

th
With independent servers every c arrival, where c is the number

of servers, is channeled to the same server. The call is serviced

completely if that server is free upon arrival and lost otherwise.

The disadvantage of independent operation is that a particular server

may still be occupied upon the arrival of its next call and the new

call would be lost, while some other server might be free and could,

in theory, handle the call that was lost. The advantage is, of course,

that assigning the arrivals is less complex and easier to implement.
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The results of this type of servicing operation are shown in

Figure 3 and described by equation 6.2.13. From Figure 3, we can see

that the results are similar to Figure 2.

If dependent servers are utilized as shownin Figure 4, we can

note that a small advantage is gained over independent operation. Be-

cause the advantage is small, wemay use equation 6.2.13 to approximate

the result, and to act as an upper limit for the probability, also.

The remaining type of operation is shownin Figure i. This is a

single server case where the arrivals are random, but not separable

except by time. As expected, an increasing arrival rate causes a

larger information loss. Equation 6.1.6 describes the result. It can

be seen in Figure i, that for a lower value of probability of loss,

XT must be very small. The advantage of such a system is simplicity,s

but the disadvantage is that for reasonable losses, XT must be verys
small.

A comparison of the loss probabilities for each system, for

specific values of c, K, and _T ,is shownin Table i. The variouss

systems may be comparedfor relative efficiency in reducing infor-

mation loss. Case 3, where dependent receivers are considered for the

delayed calls lost servicing routine, has the lowest probability of

loss; Case 2 has the second best, and Case i the next. These are

followed by redundant data and the non-separable case in decreasing

order of complexity an_ henc_ decreasing order of improvement. In the

situation where there is only one receiver and one data period, Case i

and the redundant data case reduce to the samesystem. Likewise,

Cases 2 and 3 are identical since no distinction can be made for
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dependent and independent operation with only one server. Referring

to Table i, we can note that redundant data operation does provide an

effective way of lowering the probability of loss, provided that the

arrival rate is <.8. For values of XT greater than .8, the system
s

becomes saturated with unserviced arrivals and further improvement is

very inefficient in terms of additional data periods. For only a few

receivers, there is a greater difference between Case I, where all

calls start service, and Cases 2 and 3, where delayed calls are lost,

than for larger values of the number of receivers, where the curves

approach each other.

Next, consider the time-bandwidth problem for each type of

operation. Time is intended to mean the time for a complete readout of

the entire set of sources. When they operate probabilistically, we

shall imply that every source must transmit at least once in some

finite interval which is part of the designers choice. Of course,

whether or not the data from each source is completely serviced is a

random determination, and the rate of loss dependent on the selection

of X, K, c, and the type of operation. Bandwidth shall mean the entire

bandwidth for the operation.

If the sources are interrogated sequentially, then all sources

respond on the same frequency. The bandwidth is just the approximate

2n

bandwidth for each symbol, BW = _ . The total bandwidth depends
T

upon whether or not the interrogation signal is entirely within this

band, or separate or wider. The time for readout without loss is, of

course, just N Ti, where N is the number of sources and TI includes

interrogation time, delay time, and data transmission time.
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Table 1

Comparison of Probability of Information Loss for Each System

System c K .3

MeanNumberof Arrivals in
One Service Period (XT$)

.5 .8 1.0 3.0

Non-separable I I .45 .64 °798 .87

mI , • .Case i I .27 38 45 55

C=_se ? I I .23 .33 .43 .50

.998

.94

.75

Case i 3 1 .0035 .014 .045 .087

Case 2 3 1 .0035 .014 .045 .075

Case 3 3 i .0031 .011 .039 .062

Redundant Data I 3 .0055 .035 .16 .30

.58

.43

.36

.94

Case i 5 I .000016 .00017 .0014 .0035

Case 2 5 1 .000016 .00017 .0014 .0035

Case 3 5 I .000015 .00013 .00125 .0032

Redundant Data i 5 .0001 .003 .06 .18

.18

.16

.II

.94

Case I 8 1 X X X X .012

Case 2 8 1 X X X X .011

Case 3 8 1 X X X X .010

Redundant Data I 8 X .00008 .0155 .13 .94

Case I is the case where all calls start service.

pendent server case where delayed calls are lost.

pendent case where delayed calls are lost.

denotes extrapolated values.

c is the number of servers.

K is the number of data periods.

X denotes PI < 00001

Case 2 is the inde-

Case 3 is the de-
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If the sources are operating randomly on the same frequency

2n
s

without separability, we again have BW = T However, the readout

time may be quite extended since it depends on the rate of arrival and

the upper time limit of the probability density that controls the

source time of transmission. The arrival rate is required to be small

if the loss is small and the_ the readout time may be very large

N

(S>_ >NT s )"

In the case of random arrivals with separability, the arrival

rates can be made large by expending resources for the addition of

servers or data intervals, and, hence, the readout times may be conse-

quentially reduced. However, the bandwidth depends upon how separa-

bility is obtained. If the separability is by frequency then

2n N
s

BW -
T

In the case of random arrivals with separability, we note that it

is more efficient, in terms of probability of lost informatio_ to in-

crease the number of receivers than to increase the number of data

periods per message. While this may be true, it depends upon the

relative costs of these alternatives to determine which would be more

useful. The redundant data interval remains a useful technique for

providing a lower probability of information loss due to receiver

loading by the arrivals. If additional sources are added to the

system, the effects of them may be partially or completely compensated

by the addition of extra data periods or receivers.

In determining what type of separability a system should utilize,

it is obvious that, should frequency be chosen, the attendent bandwidth
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is linearly increased with the number of sources. Location separa-

bility implies a concept whereby large antennas and high frequencies

are required. Large antennas in space may not be practical, and the

problem of directivity may also not be practical because of motion or

stability at either end of the propagation link.

We have used FSK and its inherent orthogonal nature for the

symbols of a message, but it is possible to utilize this technique of

orthogonality for the entire message. Such reception and isolation

would be accomplished by the use of receivers performing as correlators

or matched filters. However, any utilization of amplitude or phase

as a factor in the received signal to be correlated with stored

signals would be subject to variation of the propagating mediu_ and, if

the number of sources is expected to be large, it would seem likely

that some frequency orthogonality would be required in any event.

The curves for delayed arrivals lost, dependent receivers and

independent receivers, do not show a very large difference, and both are

not very different from the curves where each call starts service.

From thi% it would seem that the most applicable choice of the re-

ception subsystem would be the one which is easiest to implement.

This, of course, depends on the exact handling of arrivals by a master

scanning unit. If delayed arrivals are lost, then the master scanner

must have a memory device for reference as each signal is encountere_

to determine whether it was present on the last scan, or not.

Arrivals are assigned to a slave receiver for service only if a new

signal appears and a slave is free. In the case where each call

receives service (possibly incomplete), a memory is also needed, the
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calls being assigned to a particular slave receiver sequentially as

they are found, but not serviced until the receiver is free.

Perhaps the most interesting type of operation is the use of

data redundancy. This is similar to a customer arriving at a service

facility and,perhaps,encountering a waiting line. If he must wait too

long in line, he can only be incompletely serviced. However, the

effect of the redundant data periods is to allow a finite amount of

waiting time for each arrival with the result that a complete service

is still possible.

The net effect of extra receivers and data periods is that by

expending our resources in them, we can increase the arrival rate to

acceptable values of readout time while maintaining a satisfactory

information lost performance.

The effect of symbol error has, of course, been treated in this

study as a separate and independent event. It, of course, depends on

the numberof states per symbol, the signal to noise energy ratio, and

other factors of the fading environment. It is necessary that this

probability be calculated for a complete viewpoint of the probability

of information lost problem. Probability of symbol error was con-

sidered to be just a noise and fading proble_ and when interference

must be considered, it was considered as part of the problem of re-

ceiver loading.

Several examplesare given in Chapter VIII which demonstrate how

one might use the performance equations and curves found in Chapters

VI and VII. In principle, we can optimize within a given system

operation by finding the optimum solution to the criterion functional

b
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for that system, or by comparing the various functionals associated

with each type of system operation, we may select that system which

gives the best performance. Best performance in this context is, of

course, defined in terms of the given criterion functional which is

valid for the particular situation.

The examples given in Chapter VIII are intended for illustrative

purposes only. They may represent simple typical solutions and

criteria, but any specific practical situation will normally provide

certain unique problems and evaluations that must be considered

separately by the potential user.

In this report several computer simulations were required to

check the results of analytical data. In all cases, a statistical

sample of i0,000 trials was made using an IBM 7074. Then the sample

arrivals were processed by a program simulating the particular serving

system. The net result was that out of I0,000 arrivals, some were

completely processed, and some were incompletely processed or lost

entirely. An example of these programs is given in Appendix B. The

probability of losing information for any arrival was calculated from

the number of lost or incompletely processed arrivals. Most of the

data checks very closely with analytical data, thus verifying the

accuracy of the results. Small deviations that are noticeab_ between

analytical and simulated results occur for small values of probability.

This is expected since, for these data points, out of I0,000 arrivals

only a few are not completely processed and the graphs are very

sensitive to a small deviation from the sample mean.
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In order to simulate Poisson arrivals, it was necessary to con-

vert the randomnumber generated by the computer to a randomnumber

following the negative exponential probability distribution. The

generated numberwas converted to represent the time between arrivals.

The conversion of the uniform randomnumber to a negative exponential

is shownin Appendix A.

In Chapter V we discussed several applications for which this

type of system performance analysis might be useful.

In the first system, we have assumeda traffic density reporting

model for use in control of traffic flow. This type of system would

probably have the basic requirement of simplicity, and because of its

more local nature, all of the reporting elements and collection devices

would be readily available. For such a system, telephone lines or the

equivalent would probably be used instead of atmospheric propagation.

In this event, the signal to noise ratio could be sufficiently large

and fading for all practical purposes non-existent. It would seem

likely that such a situation would imply the use of sequential

interrogation, resulting in no loss to the system from servicing

problems. The only loss would be from symbol errors and this can be

reduced to negligible amounts by the use of telephone lines and high

signal to noise ratios. Additional reporting sites could be readily

added to an existing system with the readout time the only parameter

affected.

In the second application suggested, we have considered a

weather reporting model. Such a system would in a large measure de-

pend upon the amount of funds available and the potential use of the
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data collected. A simple model using sequential interrogation might

be considered first. However, the system desired might be more

sophisticated than this is if its uses are more general and additions

to the number of reporting stations are possible. Any model covering

large geographical areas would require reporting stations in the ocean

and in uninhabited regions of the earth such as polar regions and

deserts. This would require the use of atmospheric propagation and,

hence, symbol errors due to fading and noise would have to be considered.

Probably any practical use of weather reporting on a large geographic

scale would result in several steps of sophistication. Perhaps, at

first, a sequential interrogation system, later as the fine resolution

of the model becomes more important and many more sources are added,

we would use a more sophisticated system such as all calls starting

service. Still late_ as readout time becomes more important for short

time analysis of the weather patterns, perhaps a dependent delayed

calls lost system would be desirable.

In the third system, a reconnaissance system may be considered.

In such a system, control of the data sources would not be possible.

It is assumed for this model that we are not seeking content of the

received signals, but merely measurements of parameters such as

frequency, pulse width, modulation type, pulse repetition rate, lo-

cation, etc. In order to accomplish these measurements adequately,

we shall assume the signal must be received and processed for a fixed

time interval. Then, if the signal duration is longer than the time

required for processing,we have a situtation similar to the data
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redundancy case. For such a reconnaissance system, the data redundancy

is already built in. The problem would reduce to minimizing the

probability of loss from the servicing, since wewould have no control

of the fading and signal to noise ratios.
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X. CONCLUSIONS

The assumption of a Rician fading distribution and additive

white Gaussian noise leads to results represented by equation 7.3.30.

Figure 9 shows the special binary case of equation 7.3.30. The graphs

show that the curves for small values of the ratio (g) of energy from

the random to energy from constant channels, the probability of error

is independent of that ratio. For values of p, the signal to noise

ratio in the fixed channel, which exceeds 3, the probability of error

falls off faster for g<l than for g_l. For values of g_l, the

curves approach the approximation given by 7.3.34. The net effect of

selecting the wrong symbol state affects the total system loss as

shown in Figure i0 and expressed by equation 8.1.2. For most normal

uses, the probability of the total system error would be I.i to 2

times the greater of the probability of loss from both the servicing

an_ the symbol decision processes, provided that both are less than .i.

The effects of data redundancy on the probability of lost in-

formation is shown by equation 6.2.44 and Figure 6. The addition of

data periods is not as efficient as adding servers. The curves in

Figure 6 do not show a fall off as fast as those in Figures 2, 3, and

4. This is especially true for larger values of kT , where a low
s

probability of loss can only be achieved by utilizing a considerable

number of data periods.

Additional receivers may also be used to lower the probability

of loss or to increase the arrival rate. These results are shown in
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Figures 2, 3, and 4 and are expressed by equations 6.2.3 and 6.2.13.

The curves are very similaswith the dependent servers having a

slightly lower probability of information loss, if all the other

parameters are equal. The curves of the independent servers with de-

layed arrivals lost and the curves where all arrivals start service

approach each other for larger values of the number of servers. For

lower values of the number of servers, the delayed calls lost

servicing routine shows a slightly lower probability of loss.

For random arrivals without separability, Figure 1 and equation

6.1.6 describe the results. In this particular situation, we note

that low probability of loss can only be accomplished for low values

of arrival rate. This is a serious restriction if readout time is

significant.

The bandwidths for each type of system considered may be approxi-

mately the same except for where frequency separation of the sources

is required. The readout time is a function of the arrival rate, the

number of sources, and the transmission time distribution. Usually

the last two factors will be fixed by practical considerations and,

therefore, the readout time will ultimately depend on the arrival rate.

The effect of arrival rate on the probability of information loss

has been shown in Figures i, 2, 3, 4, and 6. By selecting K or c,

_T and the probability of loss may be controlled to a satisfactory
S

degree.

Further use of these performance results may be used in a search

for optimum results using specific criterion functionals. Either a

given system may be optimized or a decision as to which system
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alternative to choose may be accomplished by the proper use of these

performance results and adequate criterion functionals.

The results for the total over-all system information loss

probability are shown in Figure i0 and equation 8.1.2. This figure

shows that the lowest possible probability of total loss (PT) is equal

to the lowest value of PI and PM' the respective probabilities of

servicing loss and symbol error loss. If either PI or PM is set at

some fixed value, the most reasonable value for the total probability

of loss would be between I°I and twice the fixed value with the

probability that is not set between .i and I times that fixed value.

I •
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XI. SUGGESTIONS FOR FURTHER RESEARCH

Usually research into a few specific problems uncovers other

problems and areas of research that appear to require further work.

The present investigation is no exception. During the research,

several other associated problems were encountered which were not con-

sidered in this work, but would seem appropriate for further attention.

Perhaps the most obvious area for further work is in the way

servicing is accomplished. Naturally, combinations of multiple

servers and redundant data intervals could be desirable, and the re-

suits of further work in this area would be interesting.

The use of priority signal handling might also be examined. The

signals from certain sources might be considered to have a higher

priority than the rest, and different service routines could be

associated with each priority class. This could be of a pre-emptive

nature where signals of a higher priority upon arrival could pre-empt

signals of a lower class being serviced, or a head of the line disci-

pline wher_ regardless of arrival time, higher priority signals go to

the head of the line of lower priority signals. Priority class

assignments could be on the basis of source location, o_ perhap_ on the

basis of whether or not the signal from each source was completely

serviced on its previous arrival. If it was not completely serviced,

then its priority class assignment could be increased. Further

priority assignments for a continuous priority designation could be on

the basis of time since last complete service, with the higher

priorities going to the longer times.
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There is also a great need for work in the area of performance

criteria, cost-effectiveness, and the sensitivity of an optimal so-

lution to parameter variation.

The use of satellites introduces certain problems which were not

fully explored. The problems of reception that occur with satellite

motion such as doppler shifting, and the moving satellite reception

horizon have not been examined.

The tracking and handling problems that occur when the sources

are free to move has not been examined, and seem to merit further

attention.

The results of data redundancy for servicing and assignment

operations that are different from that considered in this study could

be examined. Calls delayed more than (K-I)T could be lost, for
s

instance, rather than incompletely serviced.
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APPENDIX A

Conversion of a Uniform Random Variable to a Negative

Exponential Random Variable

Let:

Y
r

X
r

represent a random number from a uniform distri-

bution such that o<Y <Y and
-- r-- o

represent a random number from an exponential

distribution such that o<_X< OO
r

Also, let

Y

o
o

X

dy =fr

o

ke-kXdx . (13.1)

Then

Y -kX

r _ 1 - e r
Y
o

(13.2)

Taking the natural log of both sides, we have

Y
X = I _mr
r - _ in (I y ).

o

(13.3)
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Y = 1 ,
o

(13.4)

therefore,

i
X -
r k in (i - Yr). (13.5)

Hence, it is obvious then that

X ¢ p(x)
r

-kx
= ke for o_X _ OO

r
(13.6)

if

I
Y c p(y) -
r Y

O

- i for o<Y _= i.
-- r--

(13.7)
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Daft Program

APPENDIX B

for Simulation of Dependent Operation

with Delayed Calls Lost

BEGIN DAFT

I

2

3

4

5

6

7

8

I0

II

12

13

14

15

SOURCE DECK

DIMENSION F(40) ,X(40) ,A(10) ,K(10)

_n_MATf I' T_.'N'.TI5.'C',T25,'A' T35 'IS' T55 'IL')

T2,T5,TI2,15,T22,F5.2,T32,15,T52,15)

15)

I2)

F5.2)

_lO)
'0' ,TIO, 'BASE')

ITS,110)

FORMAT'

FORMAT

FORMAT (

FORMAT_

FORMAT I

FORMAT

FORMAT_

I=0

J=0

READ 6,IBI

CALL SETBASE (IBI)

READ 3,M

PRINT i

READ 4, IK

IF(IK) 12,12,11

J=J+l

K(J) =IK

GO TO i0

Jl=J

READ 5,BA

IF(BA) 15,15,14

I=I+i

A(1) =BA
GO TO 13

Ii=I

DO i00,I=i,Ii

DO 100,J=l,Jl

KK=K(J)

N=0

IS=O

IL=0

TI=0.

DO 20,L=I,KK

RI=RAND( .99999999)

DI=I. -RI

ZI=- (I °/A(1) )*ALOG(DI)

TI=TI+ZI

F(L) =rl
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20 X(L) =F(L) +i.

T=TI

24 IF(M-N) 50,50,25

25 R=RAND( .99999999)

D=I. -R

Z=-(I./A(I) )*AEON(D)

T=T+Z

C=T

N=N+I

L=I

26 IF(C-X(L) 28,27,27

27 IS=IS+I

F(L) =C

X(E) =F(E) +i.

GO TO 24

28 IF(KK-L) 30,30,32

30 IL=IL+I

GO TO 24

32 L=L+I

GO TO 26

50 PRINT 2,N,K(J),A(1), IS,IL

i00 CONTINUE

PRINT 7

CALL SAVEBASE (IB)

PRINT 8, IB

STOP

SOURCE DECK

DATA CARDS

6073979627

i0000

01

02

03

04

O5

06

O7

O8

i0

BLANK

00.30

00.50

00.80

01.00

03.00

BLANK
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O

The Daft programming language is very similar to Fortran.

Several routine functions appear in this program that might be ex-

plained briefly.

RAND - This is a quasi-random number generator.

The number is selected from a uniform

distribution between 0 and .99999999.

SET BASE This is a routine to set the base number of

the random number generator in order that the

same quasi-random numbers are not repeated.

SAVEBASE This is a routine that can produce a printout

of the last base number of the random

generator.


